

COMUNE di RIMINI

Dipartimento del TERRITORIO Settore Infrastrutture, Mobilità e Qualità Ambientale

Piano Op. Fondo Sviluppo e Coesione (FSC) Infrastr. 2014-2020 S.S. Adriatica - Lavori di miglioramento del livello di servizio nel tratto compreso tra il km 201+400 ed il km 206+000 in Comune di Rimini. Costruzione di rotatoria sulla SS 16 in prossimità dello stabilimento Valentini e collegamento con la Via A. Moro. INT. C

Intervento C: RACCORDO SS 16 e PROLUNGAMENTO di Via TOSCA-VIABILITÀ di ACCESSO al QUARTIERE PADULLI

CUP C91B16000450004 - Fascicolo 2017-245-005.

PROGETTO di Fattibilità Tecnico Econom e DEFINITIVO

AII. B1 RELAZIONE IDRAULICA GENERALE

Rev. 04

PROGETTISTA:

Ing. Paolo Vicini

COLLABORATORI:

PROGETTISTA PUBBLICA ILLUMINAZIONE:

P.I. Igino Vichi

STUDIO GEOLOGICO

Dott. Ronci Stefano -Geologo -Rimini

INDAGINI GEOLOGICHE

Intergeo S.R.L. - RSM

Progettista e Direttore Operativo Opere Strutturali

Ing. Loris Rinaldi - Rimini

IL RESPONSABILE DI PROCEDIMENTO:

Ing. Alberto Dellavalle

DISEGNATORE

Ing. Francesco Colonna

ANALISI RUMORE

NoRumore - Dott. Casadio - Forlì

OPERE a VERDE

Ing. Carlotta Fabbri

Rimini lì. maggio 2019

B1 RELAZIONE IDRAULICA GENERALE

rev04

INDICE

1.		PREMESSA	4
2.		DESCRIZIONE DELL'INTERVENTO	4
3.		ELABORAZIONE DELLE CURVE DI POSSIBILITÀ CLIMATICA	5
4.		DETERMINAZIONE PORTATA MASSIMA	5
	4.1	Descrizione del modello idrologico	5
	4.2	Determinazione tempo di corrivazione	6
	4.3	Determinazione portate di calcolo delle nuove impermeabilizzazioni	7
	4.4	Superifici non laminate	8
	4.5	Dimensionamento della rete bianca	9
5.		DIMENSIONAMENTO VASCHE DI LAMINAZIONE	11
	5.1	Laminazione delle superfici lato Riccione rispetto al fosso Mavone	11
	5.1.1	Laminazione nella grande vasca vicino all'argine del deviatore Ausa	11
	5.1.2	Laminazione nella piccola vasca al nuovo accesso di Via Cerasolo	13
	5.2	Laminazione delle superfici lato Ravenna rispetto al fosso Mavone	16
6.		DIMENSIONAMENTO VASCA PRIMA PIOGGIA	18
7.		CONCLUSIONI	18

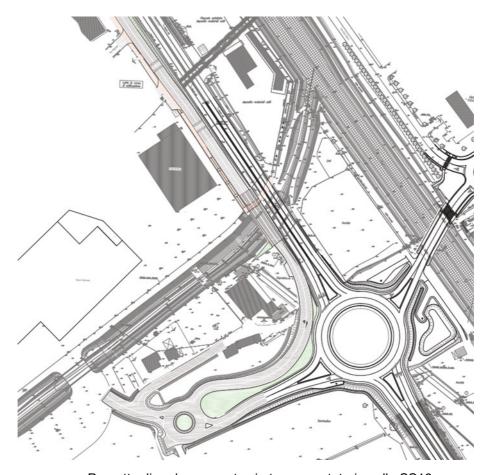
1. PREMESSA

Oggetto della presente relazione è lo studio ed il dimensionamento della rete di collettamento delle acque di pioggia raccolte sulla sede stradale di intervento.

La presente relazione accoglie le osservazioni avanzate dal Consorzio di Bonifica nel corso della I seduta della Conferenza di Servizio sul progetto del 16/01/2019.

Per raggiungere l'invarianza idraulica dell'intervento del lotto C viene fatto un ragionamento complessivo inglobando all'interno di esso anche il lotto A-B in quanto facente parte dello stesso progetto infrastrutturale.

La laminazione delle aree impermeabilizzate del lotto A-B avviene attraverso la realizzazione di una vasca di laminazione tra la SS16 e il canale Ausa e visto che l'impermeabilizzazione delle nuove aree coinvolte dal lotto C sono di piccole dimensioni, l'invarianza idraulica complessiva dell'intervento viene raggiunta ampliando la vasca del lotto AB del volume di acqua calcolato per la laminazione delle aree impermeabilizzate nel lotto C.


Visto il progetto infrastrutturale redatto per il lotto C, risulta evidente che il sistema di regimazione delle acque a monte del Canale Mavone, nella zona di intervento, verrà riprogettato e scaricherà all'interno del canale stesso, inoltre sulla sede stradale del nuovo ponte sul Mavone e sulla restante parte della nuova rotatoria di collegamento tra via Tosca e la SS16, le acque saranno recapitate nei fossi ai piedi del rilevato stradale tramite embrici lungo il rilevato stesso e quindi, come già nello stato di fatto, verso la rete esistente e recapitate nel deviatore Ausa.

Non si riscontrano, nell'area, problematiche particolari dal punto di vista idrologico; i recettori principali presenti, di dimensioni importanti, sono il canale fosso Mavone ed il canale deviatore Ausa, di cui il primo è tributario. Il vecchio corso del fossato Mavone Piccolo è stato chiuso qualche anno fa ed in parte sostituito da un collettore fognario.

Il sistema di regimazione delle acque verrà dimensionato e progettato attraverso le metodologie classiche spiegate nei capitoli successivi.

2. DESCRIZIONE DELL'INTERVENTO

- L'intervento in esame è costituito dalla realizzazione di un prolungamento di via Tosca che prevede l'attraversamento del fosso Mavone a mezzo di un ponte carrabile e la successiva immissione in una nuova rotatoria di diametro esterno 32 m che offre un braccio di collegamento con la SS16 in corrispondenza della rotatoria esistente al km. 202 + 700, un nuovo ingresso a via Cerasolo, e un nuovo braccio di accesso alle industrie Valentini.

Progetto di prolungamento via tosca e rotatoria sulla SS16

3. ELABORAZIONE DELLE CURVE DI POSSIBILITÀ CLIMATICA

La stima delle precipitazioni si basa sull'applicazione delle cosiddette curve di possibilità climatica, che consentono di stabilire una relazione tra l'altezza di precipitazione h_i e la durata della stessa, per un assegnato tempo di ritorno T_r .

Nella tabella successiva si riportano le espressioni delle curve di possibilità pluviometrica calcolate per un tempo di ritorno Tr=30 anni in funzione dei parametri forniti dal Consorzio di Bonifica Riminese (Regolamento di Polizia idraulica-Allegato tecnico p.34).

$$T_r = 30 \text{ anni}$$
 $h=54.64 \ d^{0.73}$ $(t_p < 1 \text{ ora});$ $T_r = 30 \text{ anni}$ $h=51.09 \ d^{0.27}$ $(t_p > 1 \text{ ora}).$

4. DETERMINAZIONE PORTATA MASSIMA

Il calcolo delle diverse portate di progetto, con tempo di ritorno trentennale e relativamente alle aree di cui sopra, viene effettuato utilizzando il *metodo cinematico lineare*, in base al quale la massima portata alla sezione di calcolo si verifica per un tempo di pioggia coincidente con il tempo di corrivazione del bacino. Tale situazione risulta infatti critica per bacino in esame.

4.1 Descrizione del modello idrologico

Il modello idrologico utilizzato è noto come "modello cinematico" o "modello della corrivazione" e si basa sul principio che la formazione della piena sia dovuta esclusivamente al trasferimento della massa liquida, escludendo quindi ogni fenomeno di invaso. Il modello inoltre è lineare e stazionario per cui ammette la sovrapposizione degli effetti.

Il modello suddivide il bacino in aree caratterizzate dallo stesso tempo di corrivazione e considera uno ietogramma di pioggia ad intensità costante. Questo fa sì che il massimo valore della portata si registri esattamente in corrispondenza di una durata di pioggia pari al tempo di corrivazione del bacino e può essere calcolato velocemente con la relazione:

$$Q_{\text{max}} = \phi i A$$
.

- φ: coefficiente di deflusso;
- i: intensità di pioggia;
- A: area del bacino.

Il coefficiente di deflusso, moltiplicato per l'intensità di pioggia, consente di avere la portata meteorica netta che affluisce alla rete di scolo.

Ogni superficie ha caratteristiche di permeabilità proprie, individuate da differenti valori del coefficiente di deflusso indicati dal Regolamento di Polizia Idraulica:

- superficie relativa alla viabilità (strade, marciapiedi): φ=0.9;
- aree verdi: ϕ =0.2;

Il coefficiente di deflusso del bacino si ottiene dalla media pesata dalle aree e dai diversi coefficienti di deflusso.

L'intensità di pioggia i esprime i mm. di pioggia caduti in un determinato intervallo di tempo, quindi facendo riferimento alle curve di possibilità climatica si ottiene:

$$i = \frac{h}{d} = ad^{n-1} \text{ (mm/h)}.$$

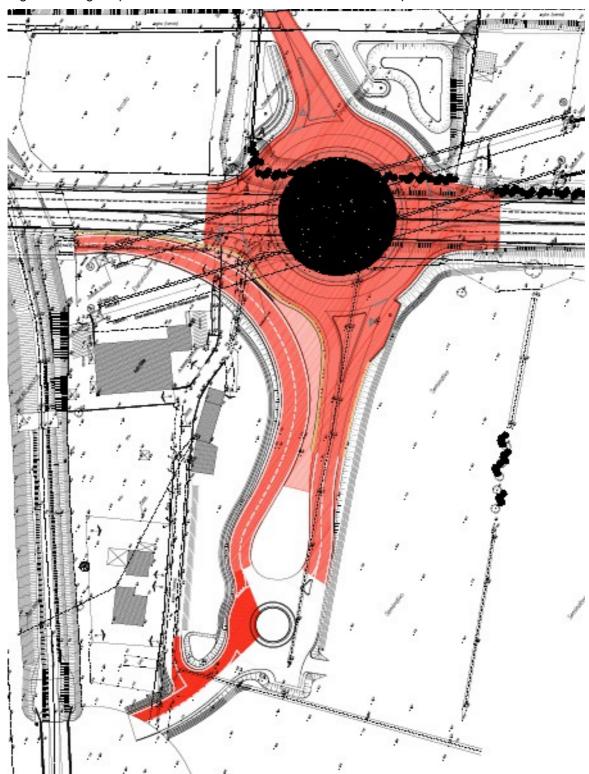
In generale la durata della precipitazione si assume uguale al tempo di corrivazione del bacino, quindi:

$$i = aT_c^{n-1}$$
 (mm/h).

4.2 Determinazione tempo di corrivazione

Il tempo di corrivazione viene invece calcolato utilizzando la formula:

$$t_{c(Ai)} = t_{ai} + t_{ri}$$

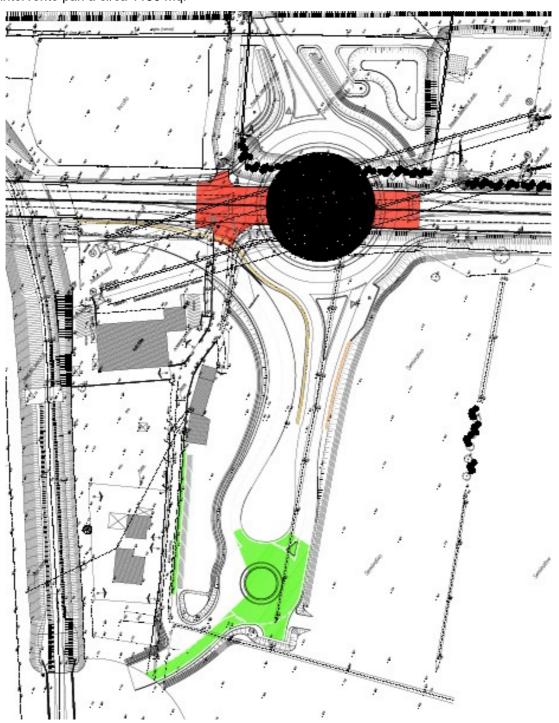

dove:

t_{ai} = tempo di ingresso in rete;

 t_{ri} = tempo di rete e viene stimato come somma dei tempi di percorrenza di ogni singola canalizzazione seguendo il percorso più lungo della rete fognaria e ipotizzando la velocità pari a quella di moto uniforme.

4.3 Determinazione portate di calcolo delle nuove impermeabilizzazioni

Di seguito si allega la planimetria con evidenziate le aree considerate per il calcolo idraulico:



Area lato Ancona rispetto al Mavone: Aree tributarie per tubazioni e vasca di laminazione.

4.4 Superifici non laminate

Le acque di pioggia raccolte su una porzione della sede stradale della nuova rotatoria di collegamento tra il prolungamento di via Tosca e la rotatoria sulla S.S. 16 saranno recapitate nei fossi ai piedi del rilevato stradale tramite embrici lungo il rilevato stesso e quindi, come già nello stato di fatto, verso la rete esistente.

Le superfici impermeabilizzate complessivamente tributarie saranno circa pari a quelle attuali. Si mostrano le superfici che non verranno laminate e che rimarranno sulla rete scolante esistente, in rosso le superfici impermeabili esistenti prima dell'intervento, pari a circa 1300 mq ed in verde quelle post intervento pari a circa 1150 mq.

4.5 Dimensionamento della rete bianca

Le acque così raccolte sono convogliate ai collettori di raccolta acque di piattaforma, da questi al bacino di laminazione e quindi al recettore finale.

I collettori di diametro fino a 400 mm. sono realizzati con tubi a sezione circolare in P.V.C.

Le portate richieste sono state calcolate con il metodo cinematico illustrato al paragrafo precedente, adottando la curva segnalatrice di possibilità climatica per piogge con tempo di ritorno pari a 30 anni.

Le portata transitabili nei condotti vengono calcolate con la formula di Gauckler – Strickler: dove:

$$Q = K_s R^{\frac{2}{3}} i^{\frac{1}{2}} A$$

- K_s ($m^{1/3}/sec$) è il coefficiente di scabrezza;
- R(m) è il raggio idraulico;
- i indica la pendenza;
- A(mq) è la sezione idraulica del collettore.

Le sezioni idrauliche indicate negli elaborati grafici risultano normalmente superiori alle dimensioni minime necessarie per condizionamenti dovuti all'orografia dei luoghi, e comunque a favore di sicurezza.

La tabella seguente mostra il calcolo idraulico eseguito per diverse sezioni della rete:

		CARATTERISIC	HE BACINO				CARATTERI	STICHE CO	NDOTTA		
Sezione	Area imp. bacino	Area perm. bacino	Lunghezza rete	Portata bacino Q	Verifica	Portata max condotta riempimento 70%	riempimento 100%	Materiale	scabrezza Ks	Diametro	pendenza
SCLIONE	m^2	m^2	m	1/s	remidu	 /\$	l/s		m*s-1/3	mm	%
a	150	0	19	3,92	VERO	12,94	15,45	PVC	120	160	0,3
b	1095	186	91	28,58	VERO	78,78	94,1	PVC	120	315	0,3
С	4109	1098	105	109,58	VERO	148,98	177,94	PVC	120	400	0,3
d	4801	1434	183	124,18	VERO	148,98	177,94	PVC	120	400	0,3
1	112	0	18	2,93	VERO	12,94	15,45	PVC	120	160	0,3
2	942	234	89	25,03	VERO	78,78	94,1	PVC	120	315	0,3
3	358	30	37	9,49	VERO	78,78	94,1	PVC	120	315	0,3
4	1084	342	63	29,68	VERO	78,78	94,1	PVC	120	315	0,3
5	2124	576	105	56,69	VERO	148,98	177,94	PVC	120	400	0,3
χ	1234	336	70	33,56	VERO	148,98	177,94	PVC	120	400	0,3
9	6535	1882	183	172,51	VERO	439,24	524,64	PVC	120	600	0,3
aa	415	0	37	10,84	VERO	99,32	118,62	CLS	80	400	0,3
bb	256	0	54	6,65	VERO	180,08	215,09	CLS	80	500	0,3

5. DIMENSIONAMENTO VASCHE DI LAMINAZIONE

5.1 Laminazione delle superfici lato Ancona rispetto al fosso Mavone

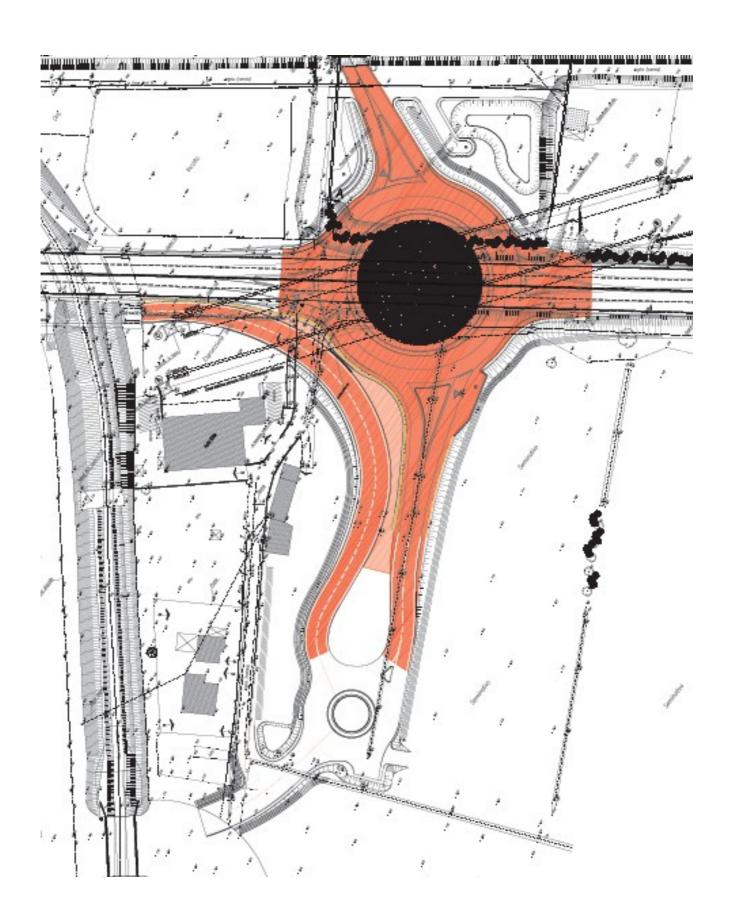
5.1.1 Laminazione nella grande vasca vicino all'argine del deviatore Ausa

Con riferimento ad un evento meteorico suddivisibile con step temporali inferiori e maggiori ad un'ora (T) si è calcolata la portata in uscita dal collettore finale (Q_{max}) , paragonandola con il limite massimo di ingresso nei canali consortili permesso dal regolamento idraulico del Consorzio di Bonifica (a cui si ritiene recapiti la rete in cui scaricherà la nuova rete in progetto di $10l/s*ha (Q_u)$.

La portata in eccesso dovrà essere contenuta nella vasca di laminazione che avrà volume massimo di circa 344 mc.; tale volume è superiore di quello richiesto (PTCP 2007) dal dimensionamento per almeno 350 mc. per ettaro di superficie impermeabilizzata (tot. = 350 x 0.842 = 295 mc).

In riferimento alla superficie totale di 0.842 ha, al modello idrologico descritto nei paragrafi precedenti ed alle formule di seguito esplicitate si riporta di seguito la tabella di calcolo della vasca di laminazione.

Portata in uscita dal collettore finale:


$$Q_{max}(T) = \phi \cdot A \cdot i(T)$$

Portata limite del regolamento:

$$Q_u(T) = 10 \frac{I}{s \cdot ha}$$

Volume vasca di laminazione:

$$V(T) = (Q_{max}(T) - Q_{II}(T)) \times T$$

	Α	fi	Т	i	Qmax							Qu	V
	m^2		min	mm/h	l/s		•	Piogge	di progetto			l/s	mc
T<1ora	8417	0,74	15	79,4	138	1	tc min	0	7	15	22	8,417	117
						1	q I/s	0	138	138	0		
T<1ora	8417	0,74	45	59,1	103	2	tc min	0	7	45	52	8,417	254
						2	q I/s	0	103	103	0		
T >= 1 ora	8417	0,74	60	51,1	89	3	tc min	0	7	60	67	8,417	289
						3	q I/s	0	89	89	0		
T >= 1 ora	8417	0,74	90	38,0	66	4	tc min	0	7	90	97	8,417	311
						4	q I/s	0	66	66	0		
T >= 1 ora	8417	0,74	120	30,8	54	5	tc min	0	7	120	127	8,417	325
						,	q I/s	0	54	54	0		
T >= 1 ora	8417	0,74	150	26,2	45	6	tc min	0	7	150	157	8,417	334
						U	q I/s	0	45	45	0		
T >= 1 ora	8417	0,74	180	22,9	40	7	tc min	0	7	180	187	8,417	339
						,	q I/s	0	40	40	0		
T >= 1 ora	8417	0,74	210	20,5	36	8	tc min	0	7	210	217	8,417	342
						٥	q I/s	0	36	36	0		
T >= 1 ora	8417	0,74	240	18,6	32	9	tc min	0	7	240	247	8,417	344
							q I/s	0	32	32	0		
T >= 1 ora	8417	0,74	300	15,8	27	10	tc min	0	7	300	307	8,417	342
						10	q I/s	0	27	27	0		
T >= 1 ora	8417	0,74	360	13,8	24	11	tc min	0	7	360	367	8,417	337
						- 11	q I/s	0	24	24	0		
T >= 1 ora	8417	0,74	420	12,3	21	12	tc min	0	7	420	427	8,417	329
						12	q I/s	0	21	21	0		
T >= 1 ora	8417	0,74	480	11,2	19	13	tc min	0	7	480	487	8,417	318
						13	q I/s	0	19	19	0		
T >= 1 ora	8417	0,74	540	10,3	18	14	tc min	0	7	540	547	8,417	306
						7-7	q I/s	0	18	18	0		
T >= 1 ora	8417	0,74	640	9,1	16	15	tc min	0	7	640	647	8,417	283
						1,5	q I/s	0	16	16	0		
												Vmax	344

	CALCOLO VOLUME DI LAMINAZIONE		
Parametro	Spiegazione	Unità di misura	Valore
Qu	Portata limite al recapito da regolamento: 10l/s*ha	l/s	8,417
Vstima	350mc per ettaro impermeabile	mc	295
Vmax	da calcolo per piogge di progetto di durate differenti	mc	344
Vvasca	volume minimo di progetto	mc	344

	DIAMETRO TUBO STROZZATURA RECAPITO		
D recapito	Diametro condotta per garantire al recapito: 10l/s*ha	m	0,15
R	raggio idraulico	m	0,037
i	pendenza della condotta		0,003
k	scabrezza di Gauckler e Strickler	?	80
Q	portata al 100% di riempimento	l/s	8,417

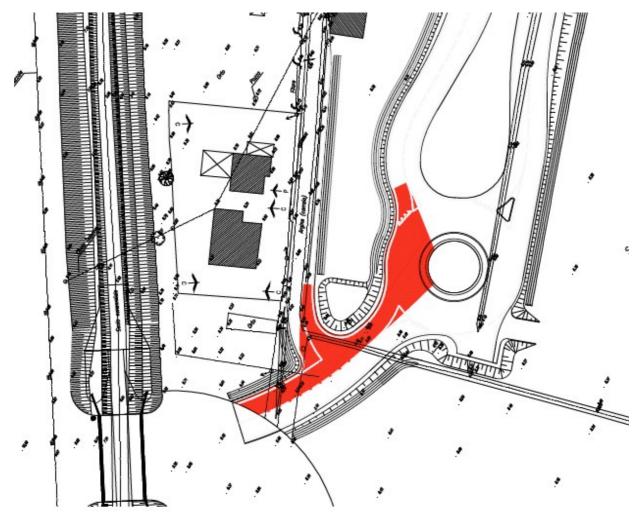
5.1.2 Laminazione nella piccola vasca al nuovo accesso di Via Cerasolo

Con riferimento ad un evento meteorico suddivisibile con step temporali inferiori e maggiori ad un'ora (T) si è calcolata la portata in uscita dal collettore finale (Q_{max}), paragonandola con il limite massimo di ingresso nei canali consortili permesso dal regolamento idraulico del Consorzio di Bonifica (a cui si ritiene recapiti la rete in cui scaricherà la nuova rete in progetto di $10l/s*ha (Q_u)$.

La portata in eccesso dovrà essere contenuta nella vasca di laminazione che avrà volume massimo di circa 28 mc.; tale volume è superiore di quello richiesto (PTCP 2007) dal dimensionamento per almeno 18 mc. per ettaro di superficie impermeabilizzata (tot. = 350 x 0.052 = 18 mc).

In riferimento alla superficie totale di 0.052 ha, al modello idrologico descritto nei paragrafi precedenti ed alle formule di seguito esplicitate si riporta di seguito la tabella di calcolo della vasca di laminazione.

Portata in uscita dal collettore finale:


$$Q_{max}(T) = \phi \cdot A \cdot i(T)$$

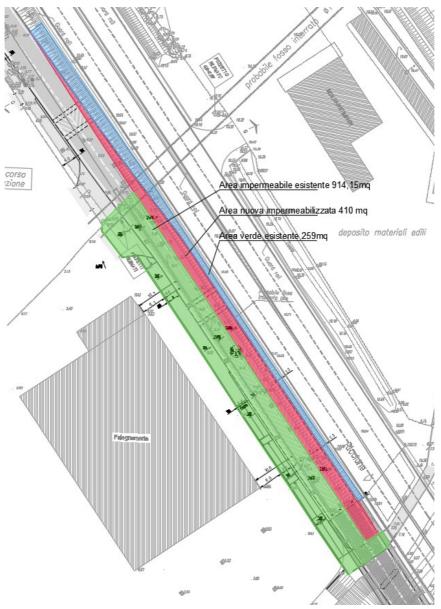
Portata limite del regolamento:

$$Q_u(T) = 10 \frac{I}{s \cdot ha}$$

Volume vasca di laminazione:

$$V(T) = (Q_{max}(T) - Q_{u}(T)) \times T$$

		c.			0								
	A	fi	T	l ,,	Qmax							Qu	V
	m^2		min	mm/h	I/s				di progetto			l/s	mc
T<1ora	520	0,90	15	79,4	10	1	tc min	0	5	15	20	0,52	9
							q I/s	0	10	10	0		
T<1ora	520	0,90	45	59,1	8	2	tc min	0	5	45	50	0,52	19
						_	q I/s	0	8	8	0		
T >= 1 ora	520	0,90	60	51,1	7	3	tc min	0	5	60	65	0,52	22
						,	q I/s	0	7	7	0		
T >= 1 ora	520	0,90	90	38,0	5	4	tc min	0	5	90	95	0,52	24
						4	q I/s	0	5	5	0		
T >= 1 ora	520	0,90	120	30,8	4	5	tc min	0	5	120	125	0,52	25
						5	q I/s	0	4	4	0		
T >= 1 ora	520	0,90	150	26,2	3	6	tc min	0	5	150	155	0,52	26
						О	q I/s	0	3	3	0		
T >= 1 ora	520	0,90	180	22,9	3	7	tc min	0	5	180	185	0,52	27
						/	q I/s	0	3	3	0		
T >= 1 ora	520	0,90	210	20,5	3	0	tc min	0	5	210	215	0,52	27
						8	q I/s	0	3	3	0		
T >= 1 ora	520	0,90	240	18,6	2	0	tc min	0	5	240	245	0,52	27
						9	q I/s	0	2	2	0		
T >= 1 ora	520	0,90	300	15,8	2	10	tc min	0	5	300	305	0,52	28
						10	q I/s	0	2	2	0		
T>=1ora	520	0,90	360	13,8	2	44	tc min	0	5	360	365	0,52	28
						11	q I/s	0	2	2	0		
T >= 1 ora	520	0,90	420	12,3	2	4.0	tc min	0	5	420	425	0,52	27
						12	q I/s	0	2	2	0		
T >= 1 ora	520	0,90	480	11,2	1	- 10	tc min	0	5	480	485	0,52	27
		,		,		13	q I/s	0	1	1	0	,	
T >= 1 ora	520	0,90	540	10,3	1		tc min	0	5	540	545	0,52	26
						14	q I/s	0	1	1	0	-,	
T >= 1 ora	520	0,90	640	9,1	1		tc min	0	5	640	645	0,52	25
20.0	0_0	0,00	- 0.0			15	q I/s	0	1	1	0	0,02	
							4 73					Vmax	28

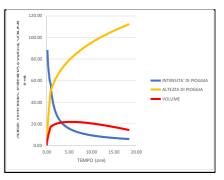

	CALCOLO VOLUME DI LAMINAZIONE		
Parametro	Spiegazione	Unità di misura	Valore
Qu	Portata limite al recapito da regolamento: 10l/s*ha	l/s	0,52
Vstima	350mc per ettaro impermeabile	mc	18
Vmax	da calcolo per piogge di progetto di durate differenti	mc	28
Vvasca	volume minimo di progetto	mc	28

5.1 Laminazione delle superfici lato Ravenna rispetto al fosso Mavone

In quest'area il progetto prevede un aumento della superficie impermeabilizzata di 410mq. Come accennato nel capitolo introduttivo, il volume di acqua raccolto nell'area da laminare nel periodo di tempo che lo massimizza, viene aggiunto nella vasca di laminazione progettata nel lotto A-B.

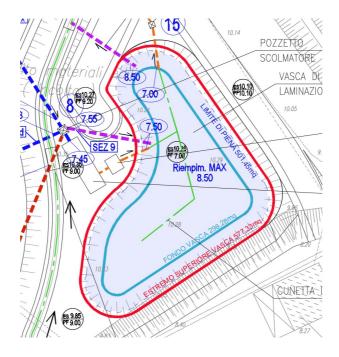
In ogni caso le portate ottenute dalla calcolazioni considerando l'intera area di intervento serviranno al dimensionamento delle condotte realizzate per la regimazione delle acque.

Di seguito vengono mostrate le superfici laminate:



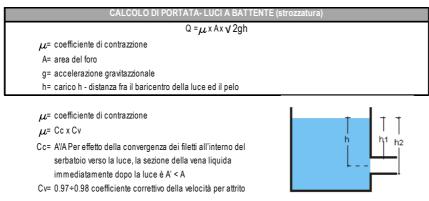
Il calcolo dei volumi di laminazione vengono riportati nelle tabelle successive.

Dal grafico sottostate è possibile verificare che la laminazione delle acque nel tratto impermeabilizzato sopra menzionato, ammonta a circa 21,75mc di acqua che vanno a sommarsi ai 28mc raccolti nella vasca di laminazione progettata in adiacenza alla nuova rotatoria progettata alla fine di Via Cerasolo.


		tn>= 1h			toc 1h		CALCOLO DI P	ORTATA DI BACI	NO - CONDOTTA	A PELO LIBERO		
	n=	0.27		n=	0.73				del T che massir	nizza il volume)		
	a=	51.09	mmH ⁻ⁿ	a=	54.64	mmH ⁻ⁿ	Øi=	coefficiente di d	leflusso pondera	lo		
							i(t) =	intensità di piog	gia			
			tr	30			Ai =	area del bacino				
	h	t	t	t	Ф	A	i(tc)	Qmax	Vmax	QU	Vu	Vlam
1h	mm/ora	ora	min	sec	2.0	m ²	mm/ora	mc/sec	mc	mc/sec	mc	mc
tp < 1h	0 14.77	0.00	10	0 600	0.9	410 410	0.00 88.64	0.00000	0.00 5.45	0.00041 0.00041	0.00	0.000 5.205
	19.86	0.17	15	900	0.9	410	79.45	0.00909	7.33	0.00041	0.25	6.960
	24.50	0.23	20	1200	0.9	410	73.51	0.00753	9.04	0.00041	0.49	8.549
	28.84	0.42	25	1500	0.9	410	69.21	0.00709	10.64	0.00041	0.62	10.026
	32.94	0.50	30	1800	0.9	410	65.89	0.00675	12.16	0.00041	0.74	11.418
	36.87	0.58	35	2100	0.9	410	63.20	0.00648	13.60	0.00041	0.86	12.743
	40.64	0.67	40	2400	0.9	410	60.96	0.00625	15.00	0.00041	0.98	14.013
	44.29 47.83	0.75	45 50	2700 3000	0.9	410 410	59.05 57.40	0.00605	16.34 17.65	0.00041	1.11	15.236 16.420
	51.28	0.92	55	3300	0.9	410	55.94	0.00573	18.92	0.00041	1.35	17.568
tp >= 1h	51.09	1.00	60	3600	0.9	410	51.09	0.00524	18.85	0.00041	1.48	17.376
	52.21	1.08	65	3900	0.9	410	48.19	0.00494	19.26	0.00041	1.60	17.665
	53.26	1.17	70	4200	0.9	410	45.65	0.00468	19.65	0.00041	1.72	17.931
	54.26 55.22	1.25	75 80	4500 4800	0.9	410 410	43.41 41.41	0.00445	20.02	0.00041	1.85	18.178 18.407
	55.22 56.13	1.33	80 85	4800 5100	0.9	410 410	41.41 39.62	0.00424	20.37	0.00041	2.09	18.407 18.620
	57.00	1.42	90	5400	0.9	410	39.62	0.00406	20.71	0.00041	2.09	18.620
	57.84	1.58	95	5700	0.9	410	36.53	0.00374	21.34	0.00041	2.34	19.006
	58.65	1.67	100	6000	0.9	410	35.19	0.00361	21.64	0.00041	2.46	19.180
	59.42	1.75	105	6300	0.9	410	33.96	0.00348	21.93	0.00041	2.58	19.344
	60.17	1.83	110	6600 6900	0.9	410	32.82	0.00336	22.20	0.00041	2.71	19.498
	60.90 61.60	2.00	115 120	7200	0.9	410 410	31.77 30.80	0.00326 0.00316	22.47	0.00041 0.00041	2.83	19.643 19.780
	62.29	2.08	125	7500	0.9	410	29.90	0.00326	22.98	0.00041	3.08	19.909
	62.95	2.17	130	7800	0.9	410	29.05	0.00298	23.23	0.00041	3.20	20.031
	63.60	2.25	135	8100	0.9	410	28.26	0.00290	23.47	0.00041	3.32	20.146
	64.22	2.33	140	8400	0.9	410	27.52	0.00282	23.70	0.00041	3.44	20.254
	64.83 65.43	2.42	145 150	8700 9000	0.9	410 410	26.83 26.17	0.00275	23.92 24.14	0.00041 0.00041	3.57 3.69	20.357
	66.01	2.58	155	9300	0.9	410	25.55	0.00262	24.36	0.00041	3.81	20.546
	66.58	2.67	160	9600	0.9	410	24.97	0.00256	24.57	0.00041	3.94	20.632
	67.14 67.68	2.75	165 170	9900 10200	0.9	410 410	24.41	0.00250	24.77 24.97	0.00041	4.06 4.18	20.714
	68.21	2.83	175	10500	0.9	410	23.89	0.00245	25.17	0.00041	4.18	20.792
	68.73	3.00	180	10800	0.9	410	22.91	0.00235	25.36	0.00041	4.43	20.934
	69.24	3.08	185	11100	0.9	410	22.46	0.00230	25.55	0.00041	4.55	20.999
	69.74	3.17	190	11400	0.9	410	22.02	0.00226	25.74	0.00041	4.67	21.061
	70.23 70.72	3.25	195 200	11700 12000	0.9	410 410	21.61 21.21	0.00222 0.00217	25.92 26.09	0.00041 0.00041	4.80 4.92	21.119
	71.19	3.42	205	12300	0.9	410	20.84	0.00217	26.27	0.00041	5.04	21.225
	71.65	3.50	210	12600	0.9	410	20.47	0.00210	26.44	0.00041	5.17	21.274
	72.11 72.56	3.58 3.67	215 220	12900 13200	0.9	410 410	20.12 19.79	0.00206	26.61 26.77	0.00041 0.00041	5.29 5.41	21.319 21.362
	73.00	3.75	225	13500	0.9	410	19.47	0.00200	26.94	0.00041	5.54	21.402
	73.43	3.83	230	13800	0.9	410	19.16	0.00196	27.10	0.00041	5.66	21.439
	73.86 74.28	3.92 4.00	235 240	14100 14400	0.9	410 410	18.86 18.57	0.00193	27.26 27.41	0.00041	5.78	21.474
	74.28	4.00	245	14700	0.9	410	18.29	0.00190	27.41	0.00041	6.03	21.507
	75.11	4.17	250	15000	0.9	410	18.03	0.00185	27.71	0.00041	6.15	21.564
	75.51	4.25	255	15300	0.9	410	17.77	0.00182	27.86	0.00041	6.27	21.590
	75.91 76.30	4.33 4.42	260 265	15600 15900	0.9	410 410	17.52 17.27	0.00180	28.01 28.15	0.00041	6.40 6.52	21.613 21.635
	76.68	4.50	270	16200	0.9	410	17.04	0.00177	28.30	0.00041	6.64	21.654
	77.06	4.58	275	16500	0.9	410	16.81	0.00172	28.44	0.00041	6.77	21.672
	77.44 77.81	4.67	280 285	16800 17100	0.9	410 410	16.59 16.38	0.00170	28.58 28.71	0.00041	6.89 7.01	21.688
	78.18	4.83	290	17400	0.9	410	16.17	0.00166	28.85	0.00041	7.13	21.701
	78.54	4.92	295	17700	0.9	410	15.97	0.00164	28.98	0.00041	7.26	21.724
	78.90	5.00	300 305	18000	0.9	410	15.78	0.00162	29.11	0.00041	7.38	21.733
	79.25 79.60	5.08	305 310	18300 18600	0.9	410 410	15.59 15.41	0.00160 0.00158	29.24 29.37	0.00041	7.50 7.63	21.740
	79.94	5.25	315	18900	0.9	410	15.23	0.00156	29.50	0.00041	7.75	21.750
	80.28	5.33	320	19200	0.9	410	15.05	0.00154	29.62	0.00041	7.87	21.753
	80.62 80.95	5.42	325 330	19500 19800	0.9	410 410	14.88	0.00153	29.75	0.00041	8.00 8.12	21.754
	81.28	5.58	335	20100	0.9	410	14.72	0.00151	29.87	0.00041	8.12	21.754
	81.61	5.67	340	20400	0.9	410	14.40	0.00148	30.11	0.00041	8.36	21.749
	81.93	5.75	345	20700	0.9	410	14.25	0.00146	30.23	0.00041	8.49	21.745
	82.25	5.83	350	21000	0.9	410	14.10	0.00145	30.35	0.00041	8.61	21.740

	VOLUME DA LAMINARE		
PAR	DEFINIZIONE	VALORE	U.M.
A =	SUPERFICIE IM PERMEABILIZZATA	410	mq
Qu =	PORTATA LIMITE PER ETTARO (10 L/S PER ETTARO)	0.410	l/sec
Vstrozz=	VOLUME USCENTE DA STROZZATURA (T vm ax)	7.995	mc
Vstim =	VOLUME STIMATO PER 350 mc PER ETTARO IMP.	14.35	mc
Vmax =	VOLUME MASSIMO DI PIOGGIA (Tc)	21.75	mc

In definitiva la vasca di laminazione progettata nel lotto AB dovrà contenere 344mc + 28mc + 21,75mc per un totale di 393.75mc.


Si riscontra che la vasca sopra menzionata, progettata in fase definitiva, affinando le calcolazioni, risulta idonea a contenere i mc calcolati in precedenza.

La vasca di laminazione sopra rappresentata contiene una quantità di acqua, considerando l'estremo superiore dell'argine posto a una quota di progetto di +9.00slm e il fondo vasca a +7.00slm, pari a (577.33mq + 298.28 mq /2) x 2m = 875.61mc.

Ponendo come franco di sicurezza 0.5m dal ciglio superiore avremmo un battente massimo della vasca di 1.5m che equivale ad avere 501.45mq + 298.28 mq /2) x 1.5m = 599.79mc di acqua di riempimento, ampiamente superiore ai 393.75mc necessari per cui ampiamente verificato.

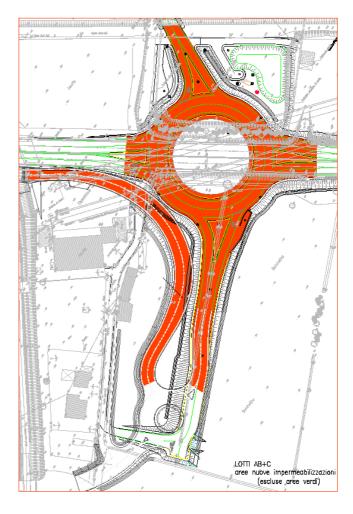
La strozzatura della vasca in uscita nel Canale Ausa viene dimensionata in funzione del battente di 1.5m sopra menzionato seppur tale livello di riempimento non rispecchia il volume di aqua calcolato in funzione del periodo di ritorno Tr30 che avrebbe dato circa 1.07m dal fondo vasca.

	DIMENSIONE CONDOTTA		
PAR	DEFINIZIONE	VALORE	U.M.
A =	AREA DI BACINO	9347	mq
Qu =	PORTATA LIMITE PER ETTARO (10 L/S PER ETTARO)	9.347	I/sec
D=	DIAMETRO LUCE - DIAMETRO TUBO	0.06000	m
A=	AREA LUCE - DIAMETRO TUBO	0.0028	m
μ=	COEFFICIENTE DI CONTRAZIONE (LETTERATURA)	1.00	
g=	ACCELERAZIONE GRAVITAZIONALE	9.810	m
htot=	ALT EZZA T OT ALE DELLA VASCA	1.500	
h=	CARICO H - DISTANZA TRA IL BARICENTO DELLA LUCE ED IL PELO LIBERO	1.470	
Qb=	PORT AT A DI BACINO	0.015177	m³/s
Qb=	PORT AT A DI BACINO	15.17680	L/s

Il calcolo della portata è stato eseguito in assenza di contrazione dei filetti d'acqua in uscita e considerando il battente di 1.5m superiore a quello calcolabile in funzione delle piene nel periodo di ritorno Tr30 per massimizzarlo.

Viste le dimensioni teoriche ridotte della strozzatura ottenute da calcolazioni (D=60mm), viene utilizzato un tubo in uscita del diametro minimo convenzionale D125.

6. DIMENSIONAMENTO VASCA PRIMA PIOGGIA


Il volume della vasca di prima pioggia viene calcolato utilizzando le "Linee Guida di indirizzo per la gestione delle acque meteoriche di dilavamento e acque di prima pioggia in attuazione della D.G.R. n°286 del 14.02.2005".

$$\begin{aligned} V_{pp} &= S \cdot 5mm \\ Q &= S \cdot i \\ V_{sed} &= Q \cdot C_f \\ V_{dis} &= Q_p \cdot T_s \end{aligned}$$

Dove:

- V_{pp} è il volume utile della vasca di prima pioggia in m^3 ;
- Q è la portata dei reflui durante l'evento meteorico in l/s;
- S è la superficie scolante drenante servita dalla rete di drenaggio in ha;
- i è l'intensità di pioggia definita pari a 0.0056 l/s;
- C_f è il coefficiente di qualità del fango;
- V_{sed} è il volume utile della vasca di sedimentazione dei fanghi in m^3 ;
- V_{dis} è il volume del disoleatore in m^3 ;
- Q_p è la portata della pompa d'impianto in l/s. Deve essere maggiore/uguale a 1 l/s;
- T_s è il tempo di separazione in min, funzione della densità dell'olio.

Per il dimensionamento della vasca sono state calcolate nel dettaglio le superfici scolanti non considerando le aree a verde come da planimetria.

Ne segue:

DIMENSIONAMENTO SISTEMA DI TRATTAMENTO PRIMA PIOGGIA		
Vtot vasche= Vpp + Vsed (*)		
Vdis= Qp + ts (*)	0 5	,
Vpp= Volume utile della vasca di prima pioggia m3 =	S x 5mm	m3
Q= Portata dei reflui dovuta all'evento meteorico l/s =	SxI	
S= Superficie scolante drenante servita dalla rete di drenaggio Ha i= Intensità delle precipitazioni piovose definita =	0.0056	l/s m2
	.,	1/51112
V _{SED} ⁼ Volume utile della vasca di sedimentazione dei fanghi m3 =	Q x Cf	
Cf= Coefficiente della quantità di fango prevista per le singole tipologie di lavorazione	tabellare	
V _{dis} = Volume disoleatore m3		
Qp= Portata della pompa dell'impianto l/s . Deve essere maggiore/uguale di 1 l/s.		
ts= Tempo di separazione min . È in funzione della densità dell'olio.	tabellare	
(*)		
Estratto dalle Linee Guida ARPA LG28/DT – Criteri di applicazione DGR 286/05 e 1860/06 ACQUE METEORICHE DI DILAVAMENT	0	
DIMENSIONE CONDOTTA		
PAR DEFINIZIONE	VALORE	U.M.
PAR DEFINIZIONE Vpp= Volume utile della vasca di prima pioggia m3	33	mc
PAR Vpp= Volume utile della vasca di prima pioggia m3 Q = Portata dei reflui dovuta all'evento meteorico l/s	33 37,0	
PAR Vpp= Volume utile della vasca di prima pioggia m3 Q = Portata dei reflui dovuta all'evento meteorico l/s S= Superficie scolante drenante servita dalla rete di drenaggio Ha	33 37,0 6600	mc I/sec mq
PAR Vpp= Volume utile della vasca di prima pioggia m3 Q = Portata dei reflui dovuta all'evento meteorico l/s S= Superficie scolante drenante servita dalla rete di drenaggio Ha i= Intensità delle precipitazioni piovose definita	33 37,0 6600 0,0056	mc I/sec mq I/s mq
PAR Vpp= Volume utile della vasca di prima pioggia m3 Q = Portata dei reflui dovuta all'evento meteorico l/s S= Superficie scolante drenante servita dalla rete di drenaggio Ha i= Intensità delle precipitazioni piovose definita Vsed= Volume utile della vasca di sedimentazione dei fanghi m3	33 37,0 6600	mc I/sec mq
PAR Vpp= Volume utile della vasca di prima pioggia m3 Q = Portata dei reflui dovuta all'evento meteorico l/s S= Superficie scolante drenante servita dalla rete di drenaggio Ha i= Intensità delle precipitazioni piovose definita Vsed= Volume utile della vasca di sedimentazione dei fanghi m3 Tutte le aree di raccolta dell'acqua piovana in cui sono presenti piccole quantità di limo prodotto dal	33 37,0 6600 0,0056 3,696	mc I/sec mq I/s mq
PAR Vpp= Volume utile della vasca di prima pioggia m3 Q = Portata dei reflui dovuta all'evento meteorico l/s S= Superficie scolante drenante servita dalla rete di drenaggio Ha i= Intensità delle precipitazioni piovose definita Vsed= Volume utile della vasca di sedimentazione dei fanghi m3	33 37,0 6600 0,0056	mc I/sec mq I/s mq
PAR Vpp= Volume utile della vasca di prima pioggia m3 Q = Portata dei reflui dovuta all'evento meteorico l/s S= Superficie scolante drenante servita dalla rete di drenaggio Ha i= Intensità delle precipitazioni piovose definita Vsed= Volume utile della vasca di sedimentazione dei fanghi m3 Tutte le aree di raccolta dell'acqua piovana in cui sono presenti piccole quantità di limo prodotto dal	33 37,0 6600 0,0056 3,696	mc I/sec mq I/s mq
PAR Vpp= Volume utile della vasca di prima pioggia m3 Q = Portata dei reflui dovuta all'evento meteorico l/s S= Superficie scolante drenante servita dalla rete di drenaggio Ha i= Intensità delle precipitazioni piovose definita Vsed= Volume utile della vasca di sedimentazione dei fanghi m3 T utte le aree di raccolta dell'acqua piovana in cui sono presenti piccole quantità di limo prodotto dal Cf= traffico o similari, vale a dire bacini di raccolta in aree di stoccaggio carburante e stazioni di rifornimento	33 37,0 6600 0,0056 3,696	mc I/sec mq I/s mq
PAR Vpp= Volume utile della vasca di prima pioggia m3 Q = Portata dei reflui dovuta all'evento meteorico l/s S= Superficie scolante drenante servita dalla rete di drenaggio Ha i= Intensità delle precipitazioni piovose definita Vsed= Volume utile della vasca di sedimentazione dei fanghi m3 T utte le aree di raccolta dell'acqua piovana in cui sono presenti piccole quantità di limo prodotto dal traffico o similari, vale a dire bacini di raccolta in aree di stoccaggio carburante e stazioni di rifornimento coperte	33 37,0 6600 0,0056 3,696	mc I/sec mq I/s mq mc
PAR Vpp= Volume utile della vasca di prima pioggia m3 Q = Portata dei reflui dovuta all'evento meteorico l/s S= Superficie scolante drenante servita dalla rete di drenaggio Ha i= Intensità delle precipitazioni piovose definita Vsed= Volume utile della vasca di sedimentazione dei fanghi m3 T utte le aree di raccolta dell'acqua piovana in cui sono presenti piccole quantità di limo prodotto dal traffico o similari, vale a dire bacini di raccolta in aree di stoccaggio carburante e stazioni di rifornimento coperte Vtot= Volume totale vasca di prima pioggia	33 37,0 6600 0,0056 3,696	mc I/sec mq I/s mq mc mc

La vasca viene prevista per le sole superfici pavimentate di progetto, escluse quelle destinate a verde.

7. CONCLUSIONI

L'intervento è realizzato e dimensionato con la finalità di evitare un eccessivo riempimento dei collettori fognari, garantendo così anche una adeguata velocità di allontanamento dei reflui verso il recapito.

Il Tecnico Ing. Paolo Vicini